Ice thickness and topographic relief in glaciated landscapes of the western USA
نویسندگان
چکیده
The development of relief in glaciated landscapes plays a crucial role in hypotheses relating climate change and tectonic processes. In particular, glaciers can only be responsible for peak uplift if they are capable of generating significant relief in formerly nonglaciated landscapes. Previous work has suggested that relief in glaciated landscapes should scale with the thickness of the ice. Here we summarise a field-based test of this hypothesis in two mountain ranges in the western United States, the Sierra Nevada, California, and the Sangre de Cristo Range, Colorado. These areas exhibit a range of degrees of glacial occupation during the Quaternary, including some drainage basins essentially unoccupied by ice, allowing a detailed exploration of how relief in different parts of a drainage basin evolves in response to glacial modification. We mapped last glacial maximum (LGM) trimlines to estimate the ice thickness at the equilibrium line altitude during the LGM, and determined several metrics of relief for drainage basins across the full spectrum of LGM ice extents. Comparison between measures of relief and ice thickness estimates indicates that relief production in glaciated mountain belts scales with ice thickness and consequently also drainage area. We extended our study to the Bitterroot Range in Idaho/Montana, and the Teton Range in Wyoming, for a more comprehensive understanding of sub-ridgeline relief, or ‘missing mass’. This measure of mean relief is surprisingly little affected by either the degree of glacial modification or the total material removed by glaciers, but appears to be influenced by the more active tectonics of the Teton Range. While the effects of glacial modification on the landscape are clear (valley widening, hanging valley formation), the overall change in the relief structure of the mountain ranges studied here is surprisingly modest. © 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Response of glacial landscapes to spatial variations in rock uplift rate
[1] The response of glaciated landscapes to rapid rock uplift, driven by tectonic convergence, is an important, often neglected, aspect of proposed interactions between plate tectonic processes and climate change. Rivers typically respond to more rapid rock uplift in part through increasing channel gradients. In contrast, the ‘‘glacial buzzsaw’’ hypothesis suggests that glaciers can erode as qu...
متن کاملMulti-scale curvature for automated identification of glaciated mountain landscapes☆
Erosion by glacial and fluvial processes shapes mountain landscapes in a long-recognized and characteristic way. Upland valleys incised by fluvial processes typically have a V-shaped cross-section with uniform and moderately steep slopes, whereas glacial valleys tend to have a U-shaped profile with a changing slope gradient. We present a novel regional approach to automatically differentiate be...
متن کاملEstimating Ice Thickness in South Georgia from SRTM Elevation Data
South Georgia is a glaciated island in the South Atlantic, which provides a primary nesting site for the albatrosses and petrels of the Southern Ocean. 60% of the island is covered by glaciers and ice fields, and the majority of the coastal glaciers are observed to be retreating. A small number of these glaciers are advancing, and others are retreating at anomalously fast rates. As the status o...
متن کاملDynamics of an ice continent on Titan
[1] If the large, high-albedo surface feature on Titan’s leading hemisphere is an elevated ‘‘continent’’ composed mainly of water ice, it will deform under its own weight. We present a model for the axisymmetric spreading of this hypothesized continent based on the similarity solution of Halfar [1983] and the approach of Nye [2000]. We find that the thickness of the model continent is dictated ...
متن کاملA nondimensional framework for exploring the relief structure of landscapes
Considering the relationship between erosion rate and the relief structure of a landscape within a nondimensional framework facilitates the comparison of landscapes undergoing forcing at a range of scales, and allows broad-scale patterns of landscape evolution to be observed. We present software which automates the extraction and processing of relevant topographic parameters to rapidly generate...
متن کامل